Application of Fuzzy-Rough Sets in Modular Neural Networks

نویسنده

  • Manish Sarkar
چکیده

In a modular neural network, the conflicting information supplied by the information sources, i.e., the outputs of the subnetworks, can be combined by applying the concept of fuzzy integral. To compute the fuzzy ints gal, it is essential to know the importance of each subset of the information sources in a quantified form. In practice, it is very difficult to determine the worth of the information sources. However, in the fuzzy integral a p proach the importance of a particular information source is considered to be independent of the other information sources. Therefore, determination of the importance of each information source should be based on the incomplete knowledge supplied by the source itself. This paper proposes a fuzzy-rough set theoretic approach to find the importance of each subset of the information sources from this incomplete knowledge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presenting the special issue on Rough-neuro computing : Preface

It goes without saying that a challenging quest for the construction of intelligent systems is realized through the development of hybrid information technologies and their vigorous and prudent exploitation. In a nutshell, what has emerged under the name of computational intelligence (CI) or soft computing is a well-orchestrated, highly synergistic consortium of technologies of neural networks,...

متن کامل

An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems

This paper presents some highlights in the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition. These techniques are capable of dealing with inexact and imprecise problem domains and have been demonstrated to be useful in the solution of classification problems. It addresses the issue of the application of appropriate evaluation cri...

متن کامل

Fuzzy Rough Granular Neural Networks for Pattern Analysis

Granular computing is a computational paradigm in which a granule represents a structure of patterns evolved by performing operations on the individual patterns. Two granular neural networks are described for performing the pattern analysis tasks like classification and clustering. The granular neural networks are designed by integrating fuzzy sets and fuzzy rough sets with artificial neural ne...

متن کامل

On $L$-double fuzzy rough sets

ur aim of this  paper  is  to introduce the concept of $L$-double fuzzy rough sets in whichboth constructive and axiomatic approaches are used. In constructive approach, a pairof $L$-double fuzzy lower (resp. upper) approximation operators is defined  and the basic properties of them  are studied.From the viewpoint of the axiomatic approach, a set of axioms is constructed to characterize the $L...

متن کامل

L-valued Fuzzy Rough Sets

In this paper, we take a GL-quantale as the truth value table to study a new rough set model—L-valued fuzzy rough sets. The three key components of this model are: an L-fuzzy set A as the universal set, an L-valued relation of A and an L-fuzzy set of A (a fuzzy subset of fuzzy sets). Then L-valued fuzzy rough sets are completely characterized via both constructive and axiomatic approaches. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009